首页 > 发展改革工作 > 基础设施发展 > 问题研究

联合国危险货物运输专家委员会(TDG)第41次会议提案23

发布时间:2012/06/04
来源:基础设施发展司
[ 打印 ]
Committee of Experts on the Transport of Dangerous Goods and on the Globally Harmonized System of Classification and Labelling of Chemicals

Sub-Committeeof Experts on theTransportof Dangerous Goods

Forty-first session

Geneva, 25 June – 4 July 2012

Item 4 (b)of theprovisional agenda

Electric storage systems: lithium-ion capacitors

 New proper shipping name for asymmetric capacitors

Transmitted by theexpertfrom Japan

Introduction

1. The Sub-Committee, atits thirty-ninth session, considered working documentST/SG/AC.10/C3/2011/14 submitted by theexpertfrom Japanproposingto establish a new proper shippingnamefor asymmetric capacitors. A number of questions and comments were provided regardingthe conditions of shippingcapacitors in a charged state and Japan was asked to clarify the hazards and appropriate transport conditions, recognizing that these capacitors must be transported in a charged state. Since the 39th session, Japan has been in discussion with KiloFarad International (KFI) and others with a specific interest in asymmetric capacitor shipping requirements. The proposal contained in this document was prepared based on the previous proposal in ST/SG/AC.10/C3/2011/14 and also reflects the results of those discussions.    

I. Background information on asymmetric capacitors

A. Definition of asymmetric capacitors

2. Detailed descriptions of asymmetric capacitors were provided in the previous document ST/SG/AC.10/C.3/2011/14. An asymmetric capacitor is an electrochemical capacitor with the positive and negative electrodes comprised of different active materials where charge and discharge are accomplished through different electrochemical processes.There are a limited number of asymmetric capacitor types currently available. One common type known as a lithium ion capacitor (LIC) is discussed below.

B.       B. LIC

3. LIC is an asymmetric capacitor which can store electric energy by adsorption and desorption of ions at the interface of the positive electrode material and electrolyte, and by intercalation and deintercalation of lithium ions at the negative electrode. The positive electrode is similar to that of an electric double layer capacitor (EDLC) and is comprised of carbon materials with a large surface area such as activated carbon, and the negative electrode is comprised of carbonaceous materials which permit intercalation and deintercalation of lithium ions. Li4Ti5O12/carbon composite may also be used for the negative electrode. The electrolyte used in LIC is an organic lithium ion salt solution.

C. Features of asymmetric capacitors

4. While asymmetric capacitors generally possess higher energy density (up to 4 times) than EDLCs, the energy density is still low in comparison to batteries.

5. Asymmetric capacitors have lower voltage limits, below which, the capacitors are damaged and lose their function. For example, lower voltage limits of LICs typically range from 1.4V to 2.2V. Therefore, it is not possible to lower the terminal voltage to 0V without adversely affecting the asymmetric capacitor and it cannot be transported in a completely uncharged state as is the case with EDLCs.

6. Asymmetric capacitors with different energy levels have been commercialized as laminate or cylindrical capacitors. Asymmetric capacitors are often configured in modules, which are assemblies of two or more capacitors, electrically connected to each other with or without additional electronics.

II. Possible risks in transport of asymmetric capacitors

7. The following two potential transport risks are posed by asymmetric capacitors.

(a) Electrical risk due to transport in a charged state: 

Considering that asymmetric capacitors must be transported in a charged state, the electrical hazard should be taken into account. Without precautions, there is the potential of accidental short circuit in transport. Therefore, asymmetric capacitors should be protected against short circuit.

The safety of asymmetric capacitors, including LICs, is markedly different from that of lithium ion batteries. In lithium ion batteries, lithium metal oxides such as LiCoO2, LiMn2O4, or LiNiO2 are used in the positive electrode. Free oxygen may be generated by the thermal decomposition of these oxides upon heating over 200ºC.  Thermal decomposition in batteries is accelerated by the reduction of lithium ion from lithium metal oxides in the charged state. This phenomenon may lead to an uncontrolled exothermic reaction, potentially resulting in venting of gases, fire or explosion. 

LICs contain no metal oxides in the positive electrode and instead use carbon materials for the positive electrode. Thus an uncontrolled exothermic reaction due to generation of free oxygen by decomposition of lithium metal oxides does not occur. 

From a transport perspective, the inherent electrical hazard in energy storage devices is best quantified by energy density.  The following table provides a comparison of asymmetric capacitors with other energy storage devices.  

 

Asymmetric Capacitor

Electric Double Layer Capacitor

Lithium Ion Battery

Pb-acid Battery

Operating Voltage [V]

3.8-2.2

2.7-0

4.2-2.75

2.35-1.75

Energy Density [Wh/L]

10-50

4-15

150-600

60-100

The energy density held by asymmetric capacitors is considerably less than lithium ion battery and less than nonspillable lead acid batteries. Therefore, the amount of heat that may be generated accidentally inside a casing through an unintended short circuit is much lower for asymmetric capacitors compared to other high energy devices such as lithium ion batteries.  While capacitors possess higher power density, the total energy is directly related to the amount of heat that may be generated inside a casing. 

Dry batteries including alkali-manganese (390Wh/L), zinc-carbon (195Wh/L), and nickel-cadmium (146Wh/L) batteries are not subject to the model regulations provided that they are protected against short circuit. Considering the level of regulations for other electric storage devices, Japanconsiders that the electrical hazard for asymmetric capacitors can be properly treated by protecting against short circuit during transport.

To demonstrate the safety of asymmetric capacitors upon accidental short circuit, external short circuit test results are shown in Table 1 and Fig.1 in the Annex. The capacitor in the fully charged state was subjected to a short circuit condition at ambient temperature with a total external resistance of 3m ohm for one hour. The maximum temperature of the capacitor was 76 ºC by heat generation due to energy release. The capacitor showed a small degree of swelling, but no significant change was observed. Noting that the required resistance for lithium battery testing under 38.3.4.5.2 of UN Manual of Tests and Criteria is less than 0.1 ohm (or 100 m ohm), the short circuit test carried out on the asymmetric capacitors is considered substantially more severe.

(b)  Chemical hazard due to the use of electrolyte solutions:

Asymmetric capacitors may contain an electrolyte meeting the criteria of a class or division of dangerous goods. Electrolyte solutions  in LICs typically consist of lithium salts, such as LiPF6, LiBF4 in an organic solvent, which  may meet the criteria for a flammable liquid.  Diethyl carbonate (flash point 25°C) and ethyl methyl carbonate (flash point 24°C) are two example solvents. The electrolyte solution is absorbed onto cell constituents such as carbon materials, other cell materials and separators. Similar to EDLCs, asymmetric devices normally include small amounts of free liquid electrolyte solution to ensure complete wetting of the electrode materials. 

The integrity of capacitors containing dangerous goods should be ensured.  Capacitors which contain any class or divisions of dangerous goods should be required to withstand a 95kPa pressure differential to confirm the robustness of capacitor casing.

The amount of flammable liquid in LICs with a Watt-hour rating of up to 20Wh is below 0.5 litre and the amount of free liquid is about 5 ml - approximately the same amount as in an EDLC of 10Wh.On this basis, it is proposed that asymmetric capacitors containing flammable liquids  with an energy storage capacity of 20Wh or less should  be transported without applying other Regulations when they are capable of withstanding a 1.2 metre drop test unpackaged and can withstand a 95kPa pressure differential test.  These tests are the same as those for EDLCs.

Examples of safety test results for 95kPa pressure differential and 1.2m drop test are shown in Table 2 and Fig.2; and Table 3 and Fig.3 in the Annex, respectively.

8.  For asymmetric capacitors, energy storage capacity means the usable energy stored in a capacitor, as calculated according to the following equation, Wh= 1/2CN(UR2-UL2)×(1/3600), using the nominal capacitance(CN),  rated voltage(UR) and rated lower limit voltage(UL). 

9.  Examples of LICs with different energy storage levels are shown in Table 4 in the Annex. Considering energy levels of existing primary batteries such as 1.35Wh for the AAA and 3Wh for the AA alkaline manganese battery, Japanconsiders the risks associated with transporting asymmetric capacitors with 0.3Wh or less to be considerably lower than those batteries.  Therefore, it is reasonable for asymmetric capacitors with 0.3Wh or less to be permitted to be transported without being subject to these Regulations.

10. Nickel-Carbon capacitors are asymmetric capacitors in which charge and discharge can be repeated by (K+ ions) adsorption at the double layer of the negative electrode, and by electrochemical reaction at the nickel hydroxide positive electrode (NiO(OH) + H2O +e- = Ni(OH)2 + OH-). The electrolyte used is an alkaline electrolyte similar to that used in alkaline batteries.

11. These devices contain considerable free liquid and are not hermetically sealed to avoid a failure due to a pressure increase by gas generation inside the devices. Since the structure of these devices is quite different from capacitors such as EDLCs and LICs in which the electrolytes are nearly completely absorbed by solid substances to keep free liquid to a minimum,it is recommended that Ni-Carbon capacitors should be transported under UN2795; Batteries, Wet, Filled with Alkali; Class 8 which is now applied to these devices.

III. Proposal

12.  The following provisions are proposed for transport of asymmetric capacitors. A new entry table would read as follows:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

3XXX

ASYMMETRIC CAPACITOR

(with an energy storage capacity greater than 0.3Wh)

9

 

 

AAA

0

E0

P003

 

 

The accompanying special provision AAA would read:

“AAA  This entry applies to asymmetric capacitors with an energy storage capacity greater than 0.3 Wh. Capacitors with an energy storage capacity of 0.3 Wh or less are not subject to these Regulations.

Energy storage capacity means the energy stored in a capacitor, as calculated according to the following equation, Wh= 1/2CN(UR2-UL2)×(1/3600), using the nominal capacitance(CN),  rated voltage(UR) and rated lower limit voltage(UL).

All asymmetric capacitors to which this entry applies shall meet the following conditions:

(a)   Capacitors or modulesshall be protected against short circuit in transport;

(b)   Capacitors shall bedesigned and constructed to safely relieve pressure thatmaybuild up in use, through a vent or a weak point in the capacitor casing. Any liquid which is released upon venting shall be contained by the packaging or by equipment in which a capacitor is installed;

(c)   Capacitors shall be marked with the energy storage capacity in Wh; and

(d)   Capacitors containing an electrolyte meeting the classification criteria of any class or division of dangerous goods shall be designed to withstand a 95kPa pressure differential;

Capacitors containing an electrolyte not meeting the classification criteria of any class or division of dangerous goods, including when configured in a module or when installed in equipment, are not subject to other provisions of these Regulations when the capacitors meet the conditions (a) to (d).

Capacitors containing an electrolyte meeting the classification criteria of any class or division of dangerous goods, with an energy storage capacity of 20Wh or less, including when configured in a module, are not subject to other provisions of these Regulations when the capacitors meet the conditions (a) to (d) and are capable of withstanding a 1.2 metre drop test unpackaged on an unyielding surface without loss of contents.

Capacitors containing an electrolyte meeting the classification criteria of any class or division of dangerous goods that are not installed in equipment and with an energy storage capacity of more than 20Wh are subject to these Regulations.

Capacitors installed in equipment and containing an electrolyte meeting the classification criteria of any class or division of dangerous goods, are not subject to other provisions of these Regulations provided that the capacitors meet the conditions (a) to (d) and the equipment is packaged in a strong outer packaging constructed of suitable material, and of adequate strength and design, in relation to the packaging’s intended use and in such a manner as to prevent accidental functioningof capacitors during transport. Large robust equipment containing capacitors may be offered for transport unpackaged or on pallets when capacitors are afforded equivalent protection by the equipment in which they are contained.

Note: Electric double layer capacitors do not belong to this entry. Nickel-Carbon capacitors are subject to these Regulations as UN2795 Batteries, wet, filled with alkali.”.

 

Annex

I.  Safety test results of asymmetric capacitors

External short circuit test

Table 1.  External short circuit test results

External short
circuit test

Sample

Results

Total external resistance:
3m ohm
Short circuit Duration: 1h
Observation: 6 h
Ambient temp.20±5ºC

LIC 2200F
Fully charged state
(3.8V)

No disassemble

No rupture

No fire

Max. cell temperature 76 ºC

                         

                         Fig. 1(1)                                                                           Fig. 1(2)

 

Altitude simulation (low pressure test)

Table 2.  Altitude simulation (low pressure test) results

Altitude simulation

Sample

Results

Stored in Δ95kPa  pressure differential for 6h at ambient temperature

LIC 1100F
Fully charged state
(3.8V)

No leakage

No disassemble

No rupture

No fire

 

       Fig. 2(1)                                                                          Fig. 2(2)

Drop test

Table 3.  Drop test results

Drop test

Sample

Results

1.2m drop test unpackaged

LIC 1100F
Fully charged state
(3.8V)

No leakage

No disassemble

No rupture

No fire

 

 

                            Fig.3 (1)                                                          Fig.3 (2)                                       Fig.3 (3)

II.   Energy storage levels of asymmetric capacitors

Table 4.  Energy storage levels of asymmetric capacitors (example)

Voltage

Max./Min

[V]

Capacitance

 

[F]

Energy

 

[Wh]

Type

Size

(mm)

Appearance

3.3/1.5

0.25

0.0003

Coin

φ6.8×1.6

 

3.8/2.2

40

0.05

Cylinder

lead terminal

φ12.5×35

 

3.8/2.2

100

0.13

Cylinder

lead terminal

 

φ18×40

 

3.8/2.2

200

0.27

Cylinder

lead terminal

 

φ25×40

 

3.8//2.2

 

1000

1.33

Cylinder

φ40×110

 

3.8/2.2

1100

1.47

Laminate

138×106×4.5

 

3.8/2.2

2200

2.94

Laminate

138×106×8.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

联合国危险货物运输专家和全球化学品统一分类和标签制度专家委员会

危险货物运输专家分委员会

第四十一次会议

日内瓦, 2012625-74
议程第
4b)项

电存储系统:锂离子电容器

不对称电容的新的运输名称

日本专家提交

介绍

1.  在分委员会39次会议上,考虑了日本专家提交的,要求对不对称电容建立新的运输名称的工作文件(ST/SG/AC.10/C3/2011/14)。对在带电状态电容的运输条件提了很多问题和意见,要求日本阐明这些电容必须在带电状态下运输的危险性和适当的运输条件。自从在39次会议以来,日本已与KiloFarad国际(KFI)和其他一些对不对称电容运输要求感兴趣的方面进行了讨论,本提案是在以前ST/SG/AC.10/C3/2011/14中提案的基础上准备的,同时也体现了那些讨论的结果

I. 不对称电容的背景信息

A.  不对称电容的定义

2.  不对称电容的详细描述在文件ST/SG/AC.10/C.3/2011/14中有提供。不对称电容是正、负极由不同的活性物质组成的电化学电容,通过不同的电化学机理完成充电和放电。目前不对称电容的种类还很少。以下讨论的锂离子电容(LIC)是较常见的一种。  

B. LIC

3.  LIC是一种不对称电容,它通过在正极材料和电解液分界面吸附和解吸附离子和在负极插入和释放锂离子储存电能。正极和双电层电容(EDLC)的相似,由具有大的比表面积的碳材质如活性碳组成,负极由含碳物质组成从而允许插入和释放锂离子。LI4Ti5O12/碳复合物能用于负极。用于LIC的电解液是锂离子盐有机溶液。

C. 不对称电容的特点

4.  不对称电容通常比双层电容有更高的能量密度(可达4倍),但与电池相比能量密度还是低。

5.  不对称电容有低电压限制,如果电压小于下限电压,电容将被损坏,功能丧失。例如:LICs 的下限电压通常在1.4V2.2V之间。因此,不对称电容在没有影响功能的情况下端电压不可能降到0V。因此不对称电容不可能像双电层电容一样在完全放电的状态下运输。

6.  根据能量不同,不对称电容被做成扁平型或圆柱型。不对称电容也经常被组装成模块, 用二个或更多电容相互电气连接,并加或不加其他的电子元件。

II.    不对称电容在运输中的可能风险

7.   不对称电容有以下二种潜在的运输风险:

                     (a) 在带电状态下运输的电气风险:

                  由于不对称电容必须在带电状态下运输,电气危险应该要考虑。

                  如果不注意,在运输中有意外短路发生的可能,所以不对称电容应有防止短路的措施。

不对称电容(包括锂离子电容)在安全方面明显不同于锂离子电池。在锂离子电池中,锂金属氧化物(如钴酸锂、锰酸锂、镍酸锂)用于正极。这些氧化物温度超过200度时热分解可能产生游离的氧。在带电状态下,由于锂金属氧化物中的锂离子减少,电池的热分解加速。这就可能导致不可控的放热反应,可造成气体释放、着火或爆炸。

锂离子电容在正极上没有金属氧化物而是用的碳材料。这样由于锂金属氧化物分解产生游离氧而不可控的放热反应不会发生。

在运输上,储能设备的本身电气危险通过能量密度被最好的控制。下面的表格提供了不对称电容和其他储能设备的比对。

                      

不对称电容

双层电容

锂离子电池

铅酸电池

工作电压[V]

3.8-2.2

2.7-0

4.2-2.75

2.35-1.75

能量密度[Wh/L]

10-50

4-15

150-600

60-100

不对称电容的能量密度对锂离子电池来说是相当小的,也比非溢出型铅酸电池要小。因此,由于意外短路在壳里产生的热量,不对称电容比另外的高能量设备(如锂离子电池)要少得多。而电容有较高的功率密度,总的能量直接和壳里产生的热量有关。

在有防止短路措施的情况下,干电池包括碱锰电池(390Wh/L)、锌碳电池(195Wh/L)和镍隔电池(146Wh/L)都不受规章范本限制。考虑了对另外电储存设备的限制程度,日本认为通过防止在运输过程中的短路,不对称电容的电气危险可以适当消除。

为证明在意外短路时不对称电容是安全的,外短路的结果在附件的表1和图1中给出。满充电的不对称电容在环境温度下用外电阻为3毫欧的导体短路一小时。由于能量释放产生热,电容的最高温度为76度。电容有一点膨胀,但没有明显变化。注意:在联合国试验和标准手册的38.3.4.5.2试验要求下对电池外短路的电阻是小于0.1(100毫欧),相比较而言对电容的短路测试要更加严格。

                            (b)  由于使用了电解液的化学危险:

不对称电容可能含有符合危险货物分类中某一类别或项别的电解液。在锂离子电容中典型的电解液由锂盐组成,如溶于有机溶剂中的六氟磷酸锂(LiPF6),四氟硼酸锂(LiBF4),它们可能符合易燃液体的标准。碳酸二乙酯(闪点25)和碳酸甲酯(闪点24)就是两种这样的溶剂。电解液吸附在电容构成部分,如碳材料、其他物质和隔膜上。和双层电容相似,不对称电容通常含有少量的游离电解液,这些电解液确保润湿电极材料。

含有危险货物的电容完整性应确保。含有任何类别或项别危险货物的电容应要求能承受95kPa压差,从而确定电容外壳是坚固的。

20Wh 以下的锂离子电容含有的可燃液体是少于0.5的,游离的液体有5毫升左右- 大约和10Wh的双层电容相等。基于这点,提议含有可燃液体的,储能容量等于或小于20Wh的不对称电容如未包装的情况下通过1.2跌落试验和95千帕压差试验,运输时不受其他规定限制。这些试验和双层电容要求的试验相同。

95千帕压差和1.2跌落试验的安全测试结果作为例子在附件的表2和图2,表3和图3中分别给出。

8.  对于不对称电容,储能容量是指储存在电容中的可用能量,可按下面的公式计算,Wh= 1/2CN(UR2-UL2)×(1/3600). 用标称容量(CN),额定电压(UR)和额定低电压限值(UL)计算。

9.   有不同储能级别的锂离子电容作为例子在附件表4中给出。考虑了现有一次电池的能量级别如AAA碱锰电池1.35瓦时,AA碱锰电池3瓦时,日本认为运输0.3瓦时或以下的电容的危险性比这些电池低很多。因此,运输容量等于或小于0.3瓦时的不对称电容不受本规章的限制是合理的。

10.  Ni-C电容是一种通过负极双电层吸附(K+离子)和正极氢氧化镍的电化学反应(NiO(OH) + H2O +e- = Ni(OH)2 + OH-)实现反复充放电的不对称电容。使用的电解液是碱性电解液,和碱性电池中使用的电解液是相似的。

11.  这类设备含有相当多的游离液体,而且为了防止因设备内部产生气体而使压力增加从而破坏设备,这些设备是不密封的。由于这些设备的结构和电容,如双层电容和锂离子电容有很大不同。双层电容和锂离子电容的电解液几乎都被固体物质吸收,游离的液体是很少的,建议Ni-Carbon电容应归为UN2795:电池,湿的,装有碱性物质 ,在第8类下运输,该条目现在就应用于这些设备。

III. 提议

12. 建议以下规定用于不对称电容的运输:新的条目如下:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

3XXX

不对称电容(储能容量大于0.3Wh

9

 

 

AAA

0

E0

P003

 

 

相应的特殊规定AAA如下:

 AAA 本条目适用于储能容量大于0.3Wh的不对称电容。储能容量小于或等于0.3Wh的电容不受本规章限制。

储能容量是指储存在电容中的能量,可按下面的公式计算,Wh= 1/2CN(UR2-UL2)×(1/3600). 用标称容量(CN),额定电压(UR)和额定低电压限值(UL)计算。

所有受限于本条目的电容应符合以下条件:

(e)  在运输中,电容或模块应有短路保护;

(f)  电容的设计和构造应能安全释放可能在使用过程中积聚的压力,可以通过排气阀或电容器外壳的弱点处完成。从排气阀释放的液体不能流出包装或装有电容的设备;

(g)  电容上标记储能容量,用Wh 表示;和

(h)  含有符合危险货物分类中任何类别和项别的电解液的电容应能承受95kpa的压差;

含有不符合危险货物分类中任何类别或项别标准的电解液的电容器,包括模块中和安装在设备中的电容器,当电容符合(a)到(d)要求,不受本规章其它规定限制

含有符合任何危险货物分类中任一类别或项别标准的电解液的储能容量小于等于20 Wh的电容器,包括装在模块中时,如果电容符合(a)到(d)要求和未包装时可以在不易弯曲的表面上承受1.2m跌落测试并无任何内容物损耗,不受本规章其他规定限制。

含有符合危险货物分类中任一类别和项别标准的电解液的电容器,未装在设备中并且储能容量超过20 Wh时,需受本规章限制。

电容器装在设备中并且内含电解液符合危险货物分类中任一类别和项别标准时,如果电容符合(a)到(d)要求,设备有坚固的、符合包装用途的足够强度和设计结构的、由合适材料制做成的外包装,并可以防止在运输中电容器意外启动时,不受本规章其他规定限制。装有电容器的大型坚固设备,当电容器由所装在内的设备提供足够保护时可以在未包装状态或装在托盘运输。

注:双电层电容器不属于此条目。Nickel-Carbon电容器受本规章限制,作为UN2795 电池,湿的,装有碱性物质。”。

 

 

附件:

排行榜